Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bishwa Nath Yadav, Shambhu Prasad and Satya Murti Prasad*

Department of Physics, Ranchi University, Ranchi 834008, India.

Correspondence e-mail:
prasadsm50@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.105$
Data-to-parameter ratio $=11.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(2-Nitrophenyl)-4,5-benz-1,3-oxazin-6-one

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$, the planar benzoxazinone moiety forms a dihedral angle of $54.54(8)^{\circ}$ with the phenyl ring. The crystal structure is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and van der Waals interactions.

Comment

The preparation of several new 2-phenyl substituted phenyl benzoxazinones and evaluation of their biological activity against some pathogenic fungi and bacteria have been reported (Kumar et al., 1977). A project has been undertaken by us to study the crystal structures of some of these benzoxazinones to establish their stereochemistry. The present paper reports the structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$ (I), a benzoxazinone derivative.

(I)

A displacement ellipsoid plot of the molecule is shown in Fig. 1. The benzoxazinone moiety is essentially planar, with O 2 deviating by a maximum of 0.037 (1) \AA, and it forms a dihedral angle of $54.54(8)^{\circ}$ with the phenyl ring. The nitro group is twisted out of the phenyl ring plane by $19.63(11)^{\circ}$. Although there is no -NH or -OH group available in the structure to form strong hydrogen bonds, the C atoms are involved in the formation of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the O atoms O 3 and O 4 of the nitro group (Table 2 and Fig. 2). Some other short intermolecular contacts are listed in Table 3.

Experimental

The title compound was obtained by the reaction of o-nitrobenzoyl chloride with anthranilic acid at 273 K (Kumar et al., 1977). The precipitate was recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (4:1) as pale-yellow crystals.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$	$D_{x}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=268.22$	Cu α radiation
Monoclinic, $P 2_{\mathrm{L}} / c$	Cell parameters from 25
$a=4.1824(6) \AA$	reflections
$b=22.191(2) \AA$	$\theta=11.2-35.2^{\circ}$
$c=12.767(1) \AA$	$\mu=0.96 \mathrm{~mm}^{-1}$
$\beta=93.26(1)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1183.0(2) \AA^{3}$	Neede, light yellow
$Z=4$	$0.36 \times 0.24 \times 0.15 \mathrm{~mm}$

Received 20 August 2002
Accepted 5 September 2002
Online 20 September 2002

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.968, T_{\text {max }}=0.999$
2438 measured reflections
2130 independent reflections
1739 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.105$
$S=1.06$
2130 reflections
182 parameters
H -atom parameters constrained

$$
\begin{aligned}
& R_{\text {int }}=0.014 \\
& \theta_{\max }=67.7^{\circ} \\
& h=0 \rightarrow 5 \\
& k=0 \rightarrow 26 \\
& l=-15 \rightarrow 15 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0456 P)^{2}\right. \\
&+0.4728 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.0048(6)
\end{aligned}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 5-\mathrm{N} 1$	$1.401(2)$	$\mathrm{C} 8-\mathrm{O} 2$	$1.366(2)$
$\mathrm{C} 7-\mathrm{O} 1$	$1.193(2)$	$\mathrm{C} 14-\mathrm{N} 2$	$1.469(2)$
$\mathrm{C} 7-\mathrm{O} 2$	$1.392(2)$	$\mathrm{N} 2-\mathrm{O} 3$	$1.213(2)$
$\mathrm{C} 8-\mathrm{N} 1$	$1.265(2)$	$\mathrm{N} 2-\mathrm{O} 4$	$1.216(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	$117.08(17)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$112.39(14)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$127.93(17)$	$\mathrm{O} 3-\mathrm{N} 2-\mathrm{O} 4$	$123.76(17)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 2$	$126.33(15)$	$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 14$	$118.43(15)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-54.3(2)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{N} 2-\mathrm{O} 3$	$158.17(18)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$121.85(18)$	$\mathrm{C} 9-\mathrm{C} 14-\mathrm{N} 2-\mathrm{O} 3$	$-18.0(3)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 14$	$127.61(19)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{N} 2-\mathrm{O} 4$	$-20.3(3)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 14$	$-56.3(2)$	$\mathrm{C} 9-\mathrm{C} 14-\mathrm{N} 2-\mathrm{O} 4$	$163.51(19)$

Table 2
Hydrogen-bonding geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {iv }}$	0.93	2.75	$3.434(2)$	131
$\mathrm{C} 12-\mathrm{H} 12 \cdots 1^{\text {v }}$	0.93	2.91	$3.470(3)$	120
$\mathrm{C} 13-\mathrm{H} 13 \cdots 1^{\mathrm{v}}$	0.93	2.68	$3.353(2)$	130
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\text {vi }}$	0.93	2.61	$3.386(2)$	141
$\mathrm{C} 11-\mathrm{H} 11 \cdots 4^{\text {vi }}$	0.93	2.79	$3.633(3)$	151
${\mathrm{C} 2-\mathrm{H} 2 \cdots 4^{\text {vii }}}^{\mathrm{C} 3-\mathrm{H} 3 \cdots 4^{\text {vii }}}$	0.93	2.84	$3.342(3)$	115
Symmetry codes:	0.93	2.53	$3.189(2)$	129
$1-x, y-\frac{1}{2}, \frac{1}{2}-z$.		$-x,-y ;-z ;$	(v)	$x, \frac{1}{2}-y, \frac{1}{2}+z ;$

Table 3
Some short inter-molecular contacts shorter than $3.5 \AA$.

$\mathrm{N} 1 \cdots \mathrm{C} 10^{\mathrm{i}}$	$3.353(3)$	$\mathrm{O} 3 \cdots \mathrm{C} 9^{\mathrm{i}}$	$3.200(3)$
$\mathrm{O} 2 \cdots 3^{i i}$	$3.045(3)$	$\mathrm{O} 3 \cdots \mathrm{C} 14^{\mathrm{i}}$	$3.103(3)$
$\mathrm{O} 2 \cdots \mathrm{C}^{\mathrm{ii}}$	$3.485(3)$	$\mathrm{O} 4 \cdots \mathrm{C} 11^{\mathrm{iii}}$	$3.245(3)$

Symmetry codes: (i) $1+x, y, z$; (ii) $x-1, y, z$; (iii) $x, \frac{1}{2}-y, z-\frac{1}{2}$.
After checking their presence in a difference map, all the H atoms were positioned geometrically and were treated as riding on their aromatic parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$.

Figure 1
An ORTEP-3 plot (Farrugia, 1997) of the molecule, with 50% probability displacement ellipsoids for non-H atoms.

Figure 2
A view of the weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in the title compound. Symmetry codes: (i) $-x,-y,-z$, (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$ (iii) $=1+x, \frac{1}{2}-y, \frac{1}{2}+z$ and (iv) $=1-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MoLEN (Fair,1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank Dr S. Kumar, Department of Chemistry, Ranchi University, Ranchi, and his co-workers for the gift of the crystals, and the Indian Institute of Technology, Chennai, India, for the collection of X-ray diffraction data.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kumar, S., Srivastava, A. K. \& Sarkar, P. C. (1977). J. Inst. Chem. India, 69, 116-117.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

